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The distribution function of ions is calculated in a two-dimensional
plasma with a rapidly expanding sheath, self-consistently with the
electrostatic potential, ¢. The numerical procedure consists of a direct
solution of an integral form of the kinetic equation. This solution relies
on the use of a simple form for the Green's function which describes the
time-evolution of the distribution, which has previously been used in
one spatial dimension and is here extended to two dimensions. The
electron density n, is assumed to be described by the Boltzmann rela-
tion, 1, g exp(eP/xr ), allowing Poisson’s squation to be solved for
@ scif -consistently with the ion density. This procedure is applied to
describe the plasma surrounding a “target” to which is rapidly applied
a large negative potential, as occurs in pltasma source ion implantation
(PSH). The ion distribution striking the target is calculated to allow
determination of the dose and depth profile.  © 1984 Academic Press, tne.

INTRODUCTION

Accurate simulation of many plasmas requires that a
modcl be employed which is both kinetic and multi-dimen-
sional. Few previous calculations of this type have been
published, and these have typically been “particle simula-
tions™ [1-3]. There is no published work to date that is
kinetic and multi-dimensional and that has been applied to
PSIL. In this paper we describe a kinetic simulation of
plasma ions which is based on direct calculation of the
distribution function. The distribution is found self-
consistently with the electrostatic potential, @, in two spatial
coordinates (x, v) or (r, z} as it evolves in time, .

The distribution is advanced in time using a numerical
Green's function (or propagator) which was usced pre-
viously in one spatial dimension (see, cg., [4 5]). The
advantages of the calewdation are hat it is aceurate {realisti-
cally incorporating the actual behavior), eflicient, and very
casy to implement.

A calculation of the distribution such as this represents
the distribution in terms of its values at a finite number of
mesh points. Tt is necessarily limited in resolution by the
mesh. A particle simulation is not directly limited to the
resolution of the mesh (although Poisson's equation must
be employed in particle simulation, and this is solved on a
mesh). On the other hand, the distribution which we
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calculate does extend throughout all of the mesh (at least
where the density is not truly negligible) at all times and is
“infinitely” divisible. Thus it is possible to achieve exceilent
resolution of regions with few particles such as the tail of the
distribution and the sheaths [5].

Eastwood [27] has presented an approach, ephemeral
particle in cell (EPIC} that, like the propagator method,
uses the method of characteristics. The main dilference
between the two nicthods is in how the method of charie-
teristics is implemented. Our method uses a fixed (usvally
uniform} mesh spacing for the “initial” mesh in a time step
and moves these initial cells, to be remapped onto the “old”
mesh at the end of the time step. EPIC uses a uniform
spacing for its linal locations, rather than the initial ones, and
then “looks back” along the characteristics to find the initial
locations at the start of the time step. It is vital to use the
former approach in order to be able to conserve numbers
and energy exactly and locally in phase space. EPIC has
also only been appiied to simple fluid calculations, so the
details of how to use it in kinetic caleulations have not been
worked out.

In summary, this work involves developing a kinetic
plasma model which is an alternative to particle simulation
with somewhat different strengths and weaknesses. The
present application is the first use of the method employed
here in more than one spatial dimension.

What follows includes a detailed explanation of the
method used, which consists of two main components,
calculating the ion distribution function and calculating the
electrostatic potential. Section 11 deals with the numerics of
the ion behavior, which has been subdivided into ballistic
motion and collisions, Scction 11 discusses the clectrostatic
calculation, which also contains the assumptions relevant to
the clectrons. Finally, in Scction 1V, the method described is
applied to a plasma with a rapidly expanding sheath, such
as is used in PSII. The results of a simulation are presented
and discussed.

15, TWO-DIMENSIONAL KINETIC SIMULATION

The numerical procedure is now described in detail.
Formally, the Boltzmann equation can be rewritten as an
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integral equation for the “new” distribution function,
fix, v, r+ A1) at time ¢ + 4¢, in terms of the old, f(x, v, £} at
time ¢:

(%, 1+ A:):f ALY, D P(x, v XY, Ar) dx dy

XY

(1)

The “propagator” P(x, v, x', v/, 4f) is proportional to the
probability of a particle, which is at {x’,v') at time ¢,
reaching (X, v) at time 7+ A:. We now describe how the
propagator is implemented numerically.

Ila. Ballistic Motion

In the absence of collisions the propagator can in prin-
ciple be found by the method of characteristics. In practice,
the way this is implemented is critical. Liouvilie’s theorem
states that in the absence of collisions, f'is constant along a
trajectory. The collisionless part of the propagator reflects
this. There are several ways of understanding the basis for
this propagator, but a good starting point is provided by the
“water bag model” [6].

The water bag model is a representation of a distribution
of particles in phase space which reflects the fact that the dis-
tribution function is incompressible (i.e., f'is constant along
a trajectory). Phase space is conceptually divided up into
“water bags” such that within each bag, f is constant in
phase space. The incompressibility property means that fis
also constant in time, within the bag, although the bag
moves through phase space as time progresses. The shape of
the boundary of the bag changes as the bag moves, but
constancy of f and conservation of particles mean that its
volume is fixed.

The idea of the water bag is useful in understanding our
numerical procedure. We divide phase space into a mesh of
cells, as is usual in many numerical schemes. The simplest
mesh will have uniform cell-width along each of its axes and
will be constant in time. This mesh can be used to define the
“water bags” at time ¢; each cell of the mesh corresponds to
a "water bag” at this instant.

At time ¢ + A1, the water bags have moved. Suppose that
we know the precise location of each bag at time 7+ Ar.
Then the density in each bag is shared between several cells
of the mesh, in the sense that the bag now overiaps several
of the cells. We now need to redistribute the contents of the
bag into these cells. The reallocation of that density into the
cells of the mesh completes the time step, in the numerical
scheme.

Calculating how much of the density in a given bag falls
in each mesh cell at the end of the step is the essence of the
ballistic (or collisionless) part of the move. This will now be
described, using a simple approximation to the behavior of
the bag. The one-dimensional version [4] is the basis for
higher-dimensional calculations, so we begin by discussing
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this in detail. Higher dimensional cases, including velocity
“dimensions™ as well as space dimensions, are very similar,

In the convolution integral, Eq.(!), the “dummy”
variable x” is in fact the “initial” position where the density
is specified at time ¢. For this reason, the initial positions of
the edges of the “water bag” in one dimension will be
denoted xi (xy) for the low {(high) side, respectively. The
final positions of the edges of the “bag” will similarly be
denoted x, (xy4), and are found by integrating along
trajectories starting at xj (xy).

The initial positions of the edges coincides with the faces
of a cell of the mesh, so if the initial cell is labeled by ',

xp=({F"—114dx

{2}

Xpy=i{4x.
The cells in which x| (xy) lies will be labeled i (iy),
where on a uniform mesh

. . XL
=int [ —— 1. 3
Ly =1 ( Ax )4‘ (3)

If i; > iy, we reverse the labels L, H associated with the
edges. The discussion below assumes that neither of the
faces bounced or that they both bounced. If only one has
bounced, we must find the point in the cell which just
bounces in A¢ and use it m the calculation of how we
redistribute density.

P(#, i') is the fraction of the density initially in cell i’
which is placed in cell i. For a uniform cartesian mesh (ie.,
a mesh with equal cell volumes) the contribution to the
density in cell i due to initial cell i’ is

4f(y= PG, ") fi). (4)

We now calculate P(i, i’) for the various cases which are
possible, 1f /| = iy, then all the density from the initial cell
i"is placed in the final cell i =i, =iy,

P, i")=1 for

=0

=i =iy

for i#i =iy. ()]

If iy =i+ 1, the “bag” is shared between two cells of the
mesh. The numbers put in cells are determined by the over-
lap of the bag with the cells, as we shall see. The full length
of the “bag” is L, = xy; — x for all cases where none of the
particles “bounce.” The boundary between the cells whose
indices are i, and iy =i, + 1l is denoted x,, = (i, — 1) dx =
i, 4x. The part of the bag within cell i extends from x to
X4,» 50 the fraction of the density in celi i is proportional to

this length:

P(is’-’)=(xm_x1_)/1~b, (6a)

f=iL:iH~1'
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In cell iy, the bag extends from x,, to xy, 50

Pt i'y= (xy— x, )/ Ly, i=iy=i +1 (6b}
and P{i, i") =0 otherwise. ‘

If iy exceeds /. by more than one, then the bag extends
across several cells at £+ 4¢. In cell i, the bag extends from

XL t0 X, 4,80

P(L 1”)=('¥5L+1—‘YL)/‘Lb= i'__iL‘ (-"a)
In cells between i and iy, the bag extends the full cell width
Ax, so that

Pli, i"Y=Adx/L,, i <i<liy. (7b}
In cell iy, the bag extends from x,, to x, so that
P, ") =(xp—xp)Ly, i=lu. (Tc)

In more than one dimension, for example in two dimen-
sions {x, y) with meshes labeled by integers (i, /) and
uniform cell spacings (4x, 4y), the density placed in cell
(i, j} coming from initial cell (i, j')is

Af(E, jy=PU, L1 J) SGS Tk (8)
where

P(i, 1, j)y=PU. ") P(}, ). (9)

This expression assumes only that the x-motion and the
y-motion are separable. If not, it is straightforward to find
a more accurate expression. Each coordinate and its corre-
sponding velocity are not usually separable [5] but the
motion in {x, v, ) can often be separated from that in ( y, v,.).
The total density at time 7 + At is ¢valuated by creating an
empty array and then adding the contributions 4 (i, j}to it.

The simplest assumption which can be made in evalu-
ating these fractions is that the entire bag moves at the same
speed, so that L, = Ax. Then iy =i+ 1, and according to
Eq. (6),

Pliy, 1) = (xp — x4,)/dx;
Pli,i')y=1—Pliy, i}

(92)
(9b)

These expressions were not accurate enough for the present
work.

In all these cases, Y, P({,i")=1 for constant mesh
spacing dx. If Ax is not constant, conservation of particles
implies that

(Ax, )Y P(i, i) dx, =1, (10)

where Ax; is the width of cell / and Ax;. is the width of the
initial cell.
This discussion is clearly extendible to arbitrary numbers
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of variables. When velocity is included, the user has a choice
whether to base the “overlap rule” on the overlap in velocity
or the overlap in energy [5]. In this paper, we use two
spatial coordinates and two components of velocity as
independent variables, so the variables are (x, y,v,,v,) or
(ryz, v, 0.)

It shouid aiso be noted that the celis can be moved in
many ways. One can move the centers of cells, that is, use
the electric field at the cell center and not allow cells to
change their size or shape along any direction as they move.
One other possibility (of many) is to move the centers of
faces of the cells independently, using the local electric field
and shape, but we usually force opposite faces to remain
parallel to one another.

These approaches can be used in combination. For this
work, in order to resolve the rapid variation in the electric
field which takes place during sheath expansion, we move
the spatial faces of each cell independently. However, we
treat the cell as if the entire cell has the same velocity. We
calculate the final locations of the spatial face centers {which
start at a single velocity) accurately, in both space and
velocity. For each spatial face of a cell, the entire face is
moved in space in the same way as the center of the face. The
extent of the face along the velocity axes (or energy axes,
in a variant of the scheme [5]) is treated as constant, so
if the face center accelerates, the entire face accelerates
accordingly.

If this is done, a relatively coarse spatial mesh is adequate.
The steady state, on the other hand, has more gentle varia-
tions in the electric field, so the front and back faces can be
given an identical “move” with the same final velocity.
Indeed, this or some other measure such as damping the
electric field [5] can be helpful to suppress certain numeri-
cal oscillations which occur when long time steps are used.

IIb. Collisions

Collisions will be considered next. The collision process
can be handled in one spatial cell at a time, since collisions
do not move directly particles from one spatial location to
another. As a resuit, the treatment of collisions does not
depend on the number of spatial coordinates employed.
Two basic approaches have been proposed in the past
[4, 5]. The simplest version of the collision operation is
briefly reviewed here.

The cotlision process in this formulation is included in a
conceptually separate stage from the “ballistic” process
described above. It may be performed at the same time, that
is, in the same pass over the array of phase space cells, in
some cases [ 5]. For the sake of this discussion, we assume
that the “ballistic move” is done “first,” however.

After the “ballistic” move, we know the distribution in
each spatial cell; omitting the spatial dependence we write
this as f{v). The collision frequency is »(v), so the density
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scattered out of the cell in time A¢ is f{v) v(v) Ar. We limit
At so that uv(v) 4t < 1. In all of this discussion of collisions,
v 15 used to indicate the discrete values of v represented on
the velocity mesh.

We normaliy remove that fraction of the density which is
scattered from all velocities in this spatial location, before
replacing any (but see Ref. [ 57). This density must then be
redistributed on the mesh. When all the scattered density
which will leave cells in this spatial location has been
removed, it is stored according to the final velocity it will
have; in the case of isotropic scattering it can be stored
according to speed. In the case considered here, where ions
are scattered as a Maxwellian, it is only necessary to store
the total density scattered in that spatial cell. If 4£(v) is the
total number to be replaced at v, then this is added to the
f(¥) obtained after all the scattered particles are removed.

For the specific case of a Maxwellian distribution of scat-
tered particles, we first construct a Maxwellian distribution
Fraa(v) at the required temperature 7, normalized to a
density of one on the numerical mesh. If the particles being
replaced contribute a density 4,, then we add density
d.F ... (v) to each cell.

1. MULTI-DIMENSIONAL ELECTROSTATICS

One of the novel features of this work is the use of more
than one spatial dimension in an electrostaticalty self-
consistent solution of Boltzmann’s equation. In order to
allow the simulation to proceed on the icn time scale, we
assume the electrons obey the Boltzmann relation,

¢
n,=H, exp (]f—];-)

where T, is the electron temperature. This is used to solve
Poisson’s equation,

(11)

Vzdﬁ:; [n,—n,]. (12)
0

In two or more dimensions, the equations must be solved by
an iterative technique, and it is highly desirable to use sparse
matrix techniques given a mesh of the scale envisaged here.
This has been done, using a flexible numerical package
described elsewhere [7].

IV. RESULTS AND DISCUSSION

We now consider the results of the simulation. Calcu-
lating the kinetics is much faster than solving Poisson’s
equation. One time step of the CS on a (20, 20, 30, 30)
mesh in (r, z, v,, v,) takes about two seconds on an HP 735
workstation. In this case the step 4¢ = 10~7, and with dv=
3 x 105 m/s, the Iastest jons travel about 5c¢m in 4t The
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FIG. 1. The geometry of the system.

Poisson equation, Eq. (12}, is solved by a Newton methed,
which needs 3-6 iterations at each time step to converge to
very high accuracy, each iteration taking 5-20 s,

The geometry of the system used to illustrate the problem
is shown in Fig. 1, showing the target and the vessel con-
taining the plasma. T, is taken to be 0.57 ¢V, The peak
initial ion density is #,=7x10°cm~>. The coordinate
system is cylindrical, so the target can be thought of as the
cross section of a cylinder.

The parameters were chosen for the simulation for their
consistency with typical PSII experiments [8, 9. The gas is
assumed to be argon. lon-neutral charge exchange colli-
sions were included, assuming a mean {ree path of 6 cm. The
target was ramped down from being cssentially grounded to
a voltage of —30kV. The ramping rate used is 3 kV/us,
which is reasonable for PSII. However, a detailed com-
parison with experiment is not presented here.

Dirichlet boundary conditions were used for the potential
on both the target and the outer walls; that is, ¢ was fixed
there. Since the electrostatic calculation used the Boltzmann
assumption for the clectron density, the peak voitage could
not go above zero for that would allow an electron density
greater than the imposed peak density. To ensure that the
peak voltage was below zero, but large enough that the elec-
tron density was close to the peak ion density, the outer walil
and the target prior to ramping were both held at —1V,
since the plasma potential relative to a grounded wall is
typically a few times the clectron temperature,

As the electrostatic potential applied to the target is
ramped down to very low values, the sheath expands
rapidly due to both the increase in potential and the
decrease in ion density as the ions move rapidiy towards the



HITCHON AND KEITER

230

voltage at 90 micteseconds

Initial Voltage

[
=

40

cm

om

Voltage at 600 microseconds

Voltage at 5 microseconds

40

voltage at 1100 microseconds

Voltage at 10 microseconds

The electrostatic potential at various times.

FIG. 2.



231

TWO-DIMENSIONAL KINETIC PLASMA MODEL
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FIG. 3. The ion density at various times.
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FIG. 4. The ion velocity distribution with respect to Vr at a point in the discharge, at various times. The location of the peint corresponds to

point 4 in Fig. 1. This has been integrated over all Vz.

target. The ions accelerate so rapidly once they are in the
sheath that there is a dramatic density change on crossing
the sheath edge. The density in the sheath is very small
compared to the initial value, whereas the density outside
the sheath 1s hardly changed. (In the outer sheath there is a
noticeable drop in ion density, also.)

The ion density shown does indeed rapidly develop a
profound hollow as the sheath moves through it. The
density and electrostatic potential are shown versus time in

Figs. 2 and 3. The density of the corner of the mesh farthest
from the target is the last to be removed, simply because it
is the most distant. The main quantity of interest is the
velocity distribution function f; shown in Figs. 4 and 5 for
point 4 in Fig. 1. The functions displayed are for various
times that occur after the sheath edge has passed point A.
The ions at this point can be subdivided into two distinct
groups, those that have recently undergone a charge
exchange collision and those that have not. Those that have

4.5e+10 '
—— 70 microseconds
Se+10T— i
3.5e+10 —*— 140 microseconds
—O0— 200 microseconds
2,5e+10

—t— 10 microseconds R

1.5e+10

number in bin

5.0e+9

i

-5.0e+9

JANN)
B2 N N

\
N

-5e+7 -3e+7

-le+7 1e+7

Vz (cm/s)

FIG, 5. The ion velocity distribution with respect to ¥z at a point in the discharge, at various times. The location of the point corresponds to

point A in Fig. 1. This has been integrated over all Vr.
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FIG. 6. The flux per unit velocity of ions striking the target, at different radii along the target's top surface,

undergone collisions have been redistributed with a
Maxwellian distribution about the zero velocity cell and
therefore account for the peak at zero. Those that have not
had a collision recently are spread out over the non-zero
velocity cells. The nonzero energy ions are not quite a
“beam,” since ions originate from points with different
potential energies. The distribution corresponding to the
earliest time is more sharply peaked than those from iater
times, and this is precisely because the ions have a smailer
range of potential energies from which they could have
originated. Knowledge of f; enables the time-integrated flux
striking different points on the target to be obtained as a
function of ion speed {Fig. 6).

As is evident in Figs. 4 and 5, there are significant com-
ponents of velocity in both r and z. Point A is nearest a sur-
face which is parallel to the r direction, so one would expect
the velocity in the z direction to be large. The fact that the
tail of a transverse velocity distribution is of a similar
magnitude to that of the velocity normal to the surface is of
interest, for this indicates that a large number of the incident
ions will have trajectories that are far from perpendicular to
the surface of the target. It should be noted that the
geometry of this target is relatively uncomplicated, and the
fact that this large a deviation from normal trajectories
should occur is indicative that effects of a similar nature are
likely for more realistic targets.

The time-integrated flux per unit velocity (Fig. 6) varies
noticeably across the target. The two peaks correspond to
ions that have recently undergone a collision and ions that
have not, as was the case for the velocity distributions dis-
cussed above. The peaks are much broader than those of the
velocity plots because we have combined both components
of the velocity to obtain the total ion speed, which is
the horizontal axis in Fig. 6. As expected, total flux is

principally concentrated at high energies for a mean free
path of 6 cm, but the peak is very broad. From this profile,
the depth profile of implanted ions can readily be obtained.

In summary, we have demonstrated an electrostatically
self-consistent solution of the ion kinetic equation, in two
spatial dimensions. The method, which ts very efficient and
easy to implement, was applied to a problem in “plasma
source ion implantation.” The distribution function of ions
and the electrostatic potential were found, as well as the
velecity spectrum of implanted ions for an applied target
voltage which was rapidly ramped down to a very large
negative value.
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